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ABSTRACT

We investigate the use of compressive sampling for net-
worked feedback control systems. The method proposed
serves to compress the control vectors which are transmitted
through rate-limited channels without much deterioration of
control performance. The control vectors are obtained by an
�1-�2 optimization, which can be solved very efficiently by
FISTA (Fast Iterative Shrinkage-Thresholding Algorithm).
Simulation results show that the proposed sparsity-promoting
control scheme gives a better control performance than a
conventional energy-limitingL2-optimal control.

Index Terms— compressive sampling, networked con-
trol, �1-�2 optimization

1. INTRODUCTION

The objective of this article is to design a controller in a net-
worked control system [2] that produces sparse control vec-
tors for effective compression before transmissions. Unfortu-
nately, the calculation of optimal sparse vectors will, in gen-
eral, require significant computational cost and may thereby
introduce delays, which are unacceptable for closed-loop op-
eration. To overcome this issue, we subsample the problem to
reduce its size and adopt a fast algorithm called FISTA (Fast
Iterative Shrinkage-Thresholding Algorithm) [1].

Networked control systems are those in which the con-
trolled plants are located away from the controllers, and the
communication should be made through rate-limited commu-
nication channels such as wireless networks or the Internet
[8]. In networked control systems, efficient signal compres-
sion or representation is essential to send control data through
rate-limited communication channels. For this purpose, we
propose an approach of sparse control signal representation
using the compressive sampling technique [4]. Our contribu-
tions in this paper are (1) a new strategy for networked feed-
back control systems based on compressive sampling, (2) an
effective data compression scheme of the control signals with
sparse representation, (3) formulation of the design problem
by �1-�2 optimization which can be efficiently solved.

The compressive sampling approach will open up a new
vista in control theory. To the best of our knowledge, so
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Fig. 1. Networked control system. The dotted line indicates a
rate-limited communication channel.

far only a few studies have applied compressive sampling to
control: [3] proposes to use compressive sensing in feedback
control systems for perfect state estimation and [6] proposes
sparse representation of transmitted control packets for feed-
back control with packet dropouts. For remote control sys-
tems, [7, 5] also propose to use �1-�2 optimization (as in this
paper). However, [7, 5] consider only feed-forward control
systems.

2. CONTROL PROBLEM

Fig. 1 shows the networked control system which we consider
in this article. The system consists of a controlled plant P , a
sensor (or sampler) S, a decoder or a digital-to-analog (DA)
converter Ψ, and a digital controller K . The definitions of
these systems are given as follows:

Plant P : The controlled plant P is modeled by the follow-
ing state-space representation:

P :

{
ẋc(t) = Axc(t) + bu(t),

y(t) = c�xc(t), t ∈ [0,∞),
(1)

where xc(0) = 0, A ∈ R
ν×ν , and b, c ∈ R

ν×1.

Sensor S: The sensor (or sampler)S converts the continuous-
time state xc into a discrete-time signal x[k] :=
xc(kT ), k = 0, 1, 2, . . . , where T > 0 is the sam-
pling period.

Decoder Ψ: The decoder (or DA converter) Ψ converts a
vector valued signal θ[k] into a continuous-time signal



{uk(t)}t∈[0,T ), k = 0, 1, 2, . . . via

Ψ : θ[k] �→ uk :=

M∑
m=−M

θm[k]ψm ∈ L2[0, T ), (2)

where M is a positive integer, θm[k] is the m-th ele-
ment of the vector θ[k], and

ψm(t) :=
1√
T

exp(jωmt), ωm :=
2πm

T
, t ∈ [0, T ).

(3)
We call the vector θ[k] a control vector. Note that the
continuous-time signal uk is band-limited to ωM =
2πM/T [rad/sec]. That is, uk belongs to the follow-
ing subspace of L2[0, T ):

VM := span{ψ−M , . . . , ψM} ⊂ L2[0, T ]. (4)

The input u to the plant P is defined by u(t + kT ) =
uk(t), t ∈ [0, T ), k = 0, 1, 2, . . . .

ControllerK: The controllerK uses a continuous-time ref-
erence signal rk ∈ VM , k = 0, 1, 2, . . . , and the sam-
pled state x[k] to produce the control vector θ[k]. The
latter defines the input signal uk as per (2).

We assume that S, Ψ, andK are synchronized at t = kT ,
k = 0, 1, 2, . . . . We also assume that we can transmit the
control vector θ[k] and the sampled state x[k] through com-
munication channels without any delays nor packet dropouts.
In this article, we consider a situation where the size N =
2M+1 of θ[k] is much larger than the size ν of the state x[k],
and should be compressed because θ[k] needs to be transmit-
ted through a rate-limited communication channel.

Under these assumptions, we then formulate our control
problem. Let yk be the continuous-time signal y on the inter-
val [kT, (k + 1)T ), that is, yk(t) := y(t + kT ), t ∈ [0, T ),
k = 0, 1, . . . . We design the controller K to achieve the fol-
lowing objectives:

1. The first objective is to attenuate the tracking error be-
tween the reference rk and the output yk on the interval
[kT, (k + 1)T ), k = 0, 1, 2, . . . . The error is measured
by the L2 norm:

|||yk − rk|||22 :=

∫ T

0

|yk(t)− rk(t)|2 dt.

2. The second objective is to reduce the data size of the
control vector θ[k] which defines the control uk via
(2). For this objective, we adopt the so-called 0-norm
of uk defined by |||uk|||0 := ‖θ[k]‖0, the number of the
nonzero elements in θ[k].

In general, there is a trade-off between tracking-error attenu-
ation and data-size reduction. For example, the sparsest solu-
tion uk ≡ 0 leads to very large error, and the control uk which

minimizes only the first objective function may not be sparse.
To solve this problem, we adopt regularization. The problem
is formulated as follows.

Problem 1 Given reference signal rk ∈ VM , k = 0, 1, 2, . . . ,
find the control uk ∈ VM (or the control vector θ[k]) which
minimizes

J(uk) := |||yk − rk|||22 + µ|||uk|||0, (5)

where µ > 0 is the regularization parameter to reconcile the
trade-off between the tracking error and the sparsity.

3. COMPRESSIVE SAMPLING FOR SPARSE
CONTROL VECTORS

The objective function J(uk) in (5) is defined on an infinite-
dimensional signal subspace VM defined in (4). We here relax
the objective function into a finite-dimensional convex � 1-�2

optimization problem by using the technique of compressive
sampling.

Since the signals rk and uk are assumed to be band-
limited up to the frequency ωM = 2πM/T [rad/sec], we can
safely discretize the signals by sampling them at a sampling
frequency higher than 2ωM based on Shannon’s sampling
theorem [9]. However, if M is very large, it may take very
long time to compute the optimal vector. It follows that there
may exist a large delay in the feedback loop, which may lead
to instability and control performance deterioration. Hence
it is preferable to use a more efficient method than Shan-
non’s sampling. For this purpose, we adopt the technique of
compressive sampling [4] with random sampling, which can
reduce the computational load for the optimization.

Random sampling is modeled as follows: we first split the
interval [0, T ) with sampling points tn := (n − 1)/fM , n =
1, 2, . . . , N = 2M + 1, where fM := 2M/T is the Nyquist
rate. Then we randomly choose K sampling points (K <
N ) from {t1, . . . , tN}. To model this, we define a random
matrix U := [ei(1), ei(2), . . . , ei(K)]

� ∈ {0, 1}K×N , where
i(1), . . . , i(N) are discrete random variables chosen from the
uniform distribution on {1, 2, . . . , N} such that i(l) < i(l +
1), l = 0, 1, . . . , N − 1, and {e1, . . . , eN} is the standard
basis in R

N , that is, en (n = 1, 2 . . . , N ) denotes a unit vector
whose n-th element is equal to one and the other elements are
equal to zero. The random matrix U is re-chosen at every
sampling step k.

By using the random variables i(1), i(2), . . . , i(K), we
define the random sampling points by t i(l) := i(l)h, h :=
T/(N − 1), l = 1, 2, . . . ,K < N . Then we consider random
sampling of the output yk. The sampled output yk(tn) with
the control signal uk ∈ VM defined in (2) is computed by

yk(tn) = c� exp(tnA)x0 +

M∑
m=−M

θm[k]〈φn, ψm〉, (6)



where 〈·, ·〉 is the inner product in L2[0, T ), and

φn(t) :=

{
c� exp [(tn − t)A] b, t ∈ [0, tn),

0, t ∈ (tn, T ].

Define the randomly sampled output vector

y[k] := [yk(ti(1)), . . . , yk(ti(K))]
� ∈ R

K .

Then by (6), we have y[k] = UGθ[k] + UHx[k], where
G is an N × N matrix defined by (G)ij = 〈φi, ψj〉, i =
1, . . . , N , j = −M, . . . ,M , andH is anN×ν matrix defined
by H :=

[
exp(t1A

�)c, . . . , exp(tNA�)c
]�

. Let r[k] :=

[rk(t1), rk(t2), . . . , rk(tN )]� ∈ R
N and Φ := UG, α[k] =

U(r[k]−Hx[k]). Then the tracking error at the random sam-
pling points {ti(1), ti(2), . . . , ti(K)} is given by y[k]− r[k] =
Φθ[k]−α[k]. It follows that the cost function (5) in Problem
1 is approximately described in a finite-dimensional one:

J0(θ[k]) := ‖Φθ[k]−α[k]‖22 + µ‖θ[k]‖0. (7)

The minimization of the cost function (7) is still difficult
to solve when M is large since the optimization is a combi-
natorial one. To reduce this, we adopt a convex relaxation by
replacing the �0 norm with the �1 norm:

J1(θ[k]) := ‖Φθ[k]−α[k]‖22 + µ‖θ[k]‖1. (8)

The cost function J1(θ[k]) in (8) is convex in θ[k] and hence
the optimal value uniquely exists. To obtain the �1-�2 optimal
vector, we use an iterative algorithm called FISTA [1]. This
algorithm is very simple and fast; it can be effectively imple-
mented in digital devices, which leads to a real-time compu-
tation in the feedback loop. For this algorithm, see [1].

4. SIMULATION RESULTS

In this section, we illustrate simulation results to show the
effectiveness of the compressive sampling technique in net-
worked feedback control systems.

The matrices in the state-space representation (1) of the
controlled plant P are taken as

A =

[
0 1

−αβ −α− β

]
, b =

[
0
1

]
, c =

[−α
1

]
,

where α = 5 and β = 10. We assume the initial state x(0) =
0. The control period T is set to be 2π. The number of the
basis functions {ψm}, or the size of the control vector θ[k] is
N = 2M + 1 = 101 (M = 50). We use the reference

rk(t) = sin(10t) + cos(5t), k = 0, 1, 2, . . . .

The sparsity of the reference rk is given by |||rk|||0 = 8 �
N = 101. Therefore, rk is a sparse vector when it is rep-
resented by the basis functions {ψm} defined in (3). That
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Fig. 2. Regularization parameter versus RMS tracking error
and average sparsity

is, the reference rk is sparse with respect to the basis {ψm}.
The shortest sampling interval in random sampling is h =
T/(N − 1) = 2π/100. We set the number of random sam-
pling K = 33. The iteration steps in FISTA for minimizing
the �1-�2 optimization in (8) is 10. We run the simulation of
the feedback control for k = 0, 1, . . . , 100, that is, the length
of simulation time is Tf := T × 101 = 202π.

First, we compute the relation between the regularization
parameter µ in (8) and metrics for control performance to be
achieved by the optimal control vector θ[k]. We use two met-
rics: RMS (Root Mean Square) of the tracking error e := y−r
and the average sparsity of control vector. {θ[k]}100

k=0. The
RMS is defined as:

RMS(e) :=

√
1

Tf

∫ Tf

0

|e(t)|2dt =
√√√√ 1

Tf

100∑
k=0

|||yk − rk|||22.

The average sparsity is defined as: ‖θ‖0 :=
∑100

k=0
‖θ[k]‖0

101 .
Fig. 2 shows the performance as a function of the parameterµ.
To compare the proposed method with a conventional one, we
consider the L2-optimal control which minimizes J2(uk) :=
|||yk − rk|||22 + µ2|||uk|||22. This cost function limits the energy
(i.e., the L2 norm) of the control uk, which has been widely
used in control. The optimal control vector, say θ 2[k], is given
by

θ2[k] = (µ2I +G�G)−1G�(r[k]−Hx[k]), (9)

where we assume the controluk is in the subspace VM defined
in (4). The RMS error performance for theL 2-optimal control
is also shown in Fig. 2. In this case, the feedback system be-
comes unstable for µ2 < 0.0005. The sparsity of the optimal
control vector is ‖θ2[k]‖0 = 101 for all k = 0, 1, . . . , 101.
That is, the L2-optimal control does not produce any sparse
vectors at all.

Fig. 2 suggests that the optimal parameter is µ ≈ 0.002
for �1-�2 optimization, and µ2 ≈ 0.0005 for L2 optimiza-
tion. With these parameters, we simulate the feedback con-
trol. Fig. 3 (a) shows the absolute value of the nonzero el-
ements in the �1-�2 optimal control vector θ[k] at k = 50.
We can see that the number of the nonzero elements is 8 out
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of 101 (the size of the vector), and hence the vector is very
sparse. Then, the L2 norm of the tracking error ek := rk − yk
on the k-th period |||ek|||2 (k = 0, 1, . . . , 100) is shown in
the top figure in Fig. 4. The sparsity history {‖θ[k]‖0}100k=0

is shown in the bottom figure in Fig. 4.
To compare the proposed method with conventional L 2-

optimal control, we compute the control vector θ 2[k] by the
formula (9) with µ2 = 0.0005. Fig. 3 (b) shows the absolute
value of the nonzero elements in the control vector θ 2[k] at
k = 50. We can see that all the elements in this vector are
nonzero (cf Fig. 3 (a)). One may think that the vector θ 2[k] is
compressible since almost all the elements are nearly zero. To
see the difference, we truncate the full vector θ 2[k] by using
the sparsity history in Fig. 4.

The stars in Fig. 3 (b) are the 8 elements of the truncated
vector. The tracking error by the truncated vectors is shown in
the top figure in Fig.4. The proposed method shows the better
performance than the truncated L2-optimal control with the

same data size. This shows the effectiveness of our method.
In an additional simulation study, we considered a step

function for the reference, that is, rk(t) = r ∈ R, k =
0, 1, 2, . . . . This signal is also sparse in the space VM and
produces a sparse control vector (we omit details due to space
limitations).

5. CONCLUSION

We have studied the use of compressive sampling for feed-
back control systems with rate-limited communication chan-
nels. Simulation studies indicate that the method proposed
can effectively compress the signals transmitted. Control vec-
tors are obtained via an �1-�2 optimization, which is solved
by the FISTA algorithm. Future work could include further
investigation of bit-rate issues and the study of closed loop
stability.
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back design: a new paradigm in opportunistic sensing,”
Proc. of ACC, pp. 3704–3709, Jul. 2011.

[4] E. J. Candes, “Compressive sampling,” Proc. Interna-
tional Congress of Mathematicians, vol. 3, pp. 1433–
1452, Aug. 2006.

[5] M. Nagahara, T. Matsuda, and K. Hayashi, “Compres-
sive Sampling for Remote Control Systems,” to appear in
IEICE Trans. on Fundamentals, Vol. E95-A, No. 4, Apr.
2012.

[6] M. Nagahara and D. E. Quevedo, “Sparse representations
for packetized predictive networked control,” Proc. IFAC
18th World Congress, pp. 84–89, Aug. 2011.

[7] M. Nagahara, D. E. Quevedo, J. Østergaard, T. Matsuda,
and K. Hayashi, “Sparse command generator for remote
control,” Proc. 9th IEEE ICCA, pp. 1055–1059, Dec.
2011.

[8] A. S. Tanenbaum, Computer Networks, 4th Ed., Prentice
Hall, 2002.

[9] M. Unser, “Sampling — 50 years after Shannon,” Proc. of
the IEEE, vol. 88, no. 4, pp. 569–587, Apr. 2000.


